PHYSX PGR Conference
…it’s complicated
*https://medicine.yale.edu/lab/colon_ramos/overview/
*McCann et al 2019 - Variation in Reported Human Head Tissue Electrical Conductivity Values
Desmos graphical calculator
With some training time, we’re able to solve the EIT forward and inverse problems instantly.
Now we can include those conductivities in subject-specific head models
Refining the framework
Testing with real EIT and EEG data
Applications to transcranial direct current stimulation
https://matthew-walker.net/slides/PGRCon/PGRCon.html
Leandro Beltrachini - Supervisor
Jack Atkinson - For presentation advice
\[\nabla\cdot(\sigma\nabla u)=0 \ \ \ \textrm{in }\Omega\\ \sigma\frac{\partial u}{\partial \textbf{n}} = \langle\sigma\nabla u,\textbf{n}\rangle=0 \ \ \ \textrm{on }\partial\Omega \backslash \cup^L_{l=1} e_l \\ u + z_l\sigma\frac{\partial u}{\partial \textbf{n}} = U_l \ \ \ \textrm{for } l=1,...,L \\ \int_{e_l}\sigma\frac{\partial u}{\partial \textbf{n}} d(\partial \Omega) = I_l \ \ \ \textrm{on } e_l \]
\[B((u,U),(v,V)) = \int_{\Omega} \sigma \nabla u \cdot \nabla v d \Omega \\ + \sum^L_{l=1} \frac{1}{z_l} \int_{e_l}(u-U_l)(v-V_l)d(\partial \Omega)\]
\[\begin{gather} \begin{pmatrix} \boldsymbol A & - \boldsymbol B \\ - \boldsymbol B^T & \boldsymbol C\end{pmatrix} \begin{pmatrix}\boldsymbol \alpha \\ \boldsymbol \beta\end{pmatrix} = \begin{pmatrix}\boldsymbol 0 \\ \boldsymbol I \end{pmatrix} \label{CEM_sys} \end{gather}\]